College of Computer and Artificial Intelligence, Zhengzhou University, Institute of Physical Education
Abstract:Multimodal reward models are crucial for aligning multimodal large language models with human preferences. Recent works have incorporated reasoning capabilities into these models, achieving promising results. However, training these models suffers from two critical challenges: (1) the inherent noise in preference datasets, which degrades model performance, and (2) the inefficiency of conventional training methods, which ignore the differences in sample difficulty. In this paper, we identify a strong correlation between response entropy and accuracy, indicating that entropy can serve as a reliable and unsupervised proxy for annotation noise and sample difficulty. Based on this insight, we propose a novel Entropy-Guided Training (EGT) approach for multimodal reasoning reward models, which combines two strategies: (1) entropy-guided data curation to mitigate the impact of unreliable samples, and (2) an entropy-guided training strategy that progressively introduces more complex examples. Extensive experiments across three benchmarks show that the EGT-trained model consistently outperforms state-of-the-art multimodal reward models.
Abstract:Cross-domain recommendation (CDR) offers an effective strategy for improving recommendation quality in a target domain by leveraging auxiliary signals from source domains. Nonetheless, emerging evidence shows that CDR can inadvertently heighten group-level unfairness. In this work, we conduct a comprehensive theoretical and empirical analysis to uncover why these fairness issues arise. Specifically, we identify two key challenges: (i) Cross-Domain Disparity Transfer, wherein existing group-level disparities in the source domain are systematically propagated to the target domain; and (ii) Unfairness from Cross-Domain Information Gain, where the benefits derived from cross-domain knowledge are unevenly allocated among distinct groups. To address these two challenges, we propose a Cross-Domain Fairness Augmentation (CDFA) framework composed of two key components. Firstly, it mitigates cross-domain disparity transfer by adaptively integrating unlabeled data to equilibrate the informativeness of training signals across groups. Secondly, it redistributes cross-domain information gains via an information-theoretic approach to ensure equitable benefit allocation across groups. Extensive experiments on multiple datasets and baselines demonstrate that our framework significantly reduces unfairness in CDR without sacrificing overall recommendation performance, while even enhancing it.
Abstract:Despite growing efforts to mitigate unfairness in recommender systems, existing fairness-aware methods typically fix the fairness requirement at training time and provide limited post-training flexibility. However, in real-world scenarios, diverse stakeholders may demand differing fairness requirements over time, so retraining for different fairness requirements becomes prohibitive. To address this limitation, we propose Cofair, a single-train framework that enables post-training fairness control in recommendation. Specifically, Cofair introduces a shared representation layer with fairness-conditioned adapter modules to produce user embeddings specialized for varied fairness levels, along with a user-level regularization term that guarantees user-wise monotonic fairness improvements across these levels. We theoretically establish that the adversarial objective of Cofair upper bounds demographic parity and the regularization term enforces progressive fairness at user level. Comprehensive experiments on multiple datasets and backbone models demonstrate that our framework provides dynamic fairness at different levels, delivering comparable or better fairness-accuracy curves than state-of-the-art baselines, without the need to retrain for each new fairness requirement. Our code is publicly available at https://github.com/weixinchen98/Cofair.
Abstract:Electromagnetic (EM) exposure compliance has long been recognized as a crucial aspect of communications terminal designs. However, accurately assessing the impact of EM exposure for proper design strategies remains challenging. In this paper, we develop a long-term thermal EM exposure constraint model and propose a novel adaptive exposure-aware beamforming design for an mmWave uplink system. Specifically, we first establish an equivalent channel model based on Maxwell's radiation equations, which accurately captures the EM physical effects. Then, we derive a closed-form thermal impulse response model from the Pennes bioheat transfer equation (BHTE), characterizing the thermal inertia of tissue. Inspired by this model, we formulate a beamforming optimization problem that translates rigid instantaneous exposure limits into a flexible long-term thermal budget constraint. Furthermore, we develop a low-complexity online beamforming algorithm based on Lyapunov optimization theory, obtaining a closed-form near-optimal solution. Simulation results demonstrate that the proposed algorithm effectively stabilizes tissue temperature near a predefined safety threshold and significantly outperforms the conventional scheme with instantaneous exposure constraints.
Abstract:Recent advances in Multimodal Large Language Models (MLLMs) have enabled agents to operate in open-ended web and operating system environments. However, existing benchmarks predominantly target consumer-oriented scenarios (e.g., e-commerce and travel booking), failing to capture the complexity and rigor of professional enterprise workflows. Enterprise systems pose distinct challenges, including high-density user interfaces, strict business logic constraints, and a strong reliance on precise, state-consistent information retrieval-settings in which current generalist agents often struggle. To address this gap, we introduce EntWorld, a large-scale benchmark consisting of 1,756 tasks across six representative enterprise domains, including customer relationship management (CRM), information technology infrastructure library (ITIL), and enterprise resource planning (ERP) systems. Unlike previous datasets that depend on fragile execution traces or extensive manual annotation, EntWorld adopts a schema-grounded task generation framework that directly reverse-engineers business logic from underlying database schemas, enabling the synthesis of realistic, long-horizon workflows. Moreover, we propose a SQL-based deterministic verification mechanism in building datasets that replaces ambiguous visual matching with rigorous state-transition validation. Experimental results demonstrate that state-of-the-art models (e.g., GPT-4.1) achieve 47.61% success rate on EntWorld, substantially lower than the human performance, highlighting a pronounced enterprise gap in current agentic capabilities and the necessity of developing domain-specific agents. We release EntWorld as a rigorous testbed to facilitate the development and evaluation of the next generation of enterprise-ready digital agents.
Abstract:Trending news detection in low-traffic search environments faces a fundamental cold-start problem, where a lack of query volume prevents systems from identifying emerging or long-tail trends. Existing methods relying on keyword frequency or query spikes are inherently slow and ineffective in these sparse settings, lagging behind real-world shifts in attention. We introduce RTTP, a novel Real-Time Trending Prediction framework that generates search queries directly from news content instead of waiting for users to issue them. RTTP leverages a continual learning LLM (CL-LLM) that converts posts into search-style queries and scores them using engagement strength + creator authority, enabling early trend surfacing before search volume forms. To ensure adaptation without degrading reasoning, we propose Mix-Policy DPO, a new preference-based continual learning approach that combines on-policy stability with off-policy novelty to mitigate catastrophic forgetting during model upgrades. Deployed at production scale on Facebook and Meta AI products, RTTP delivers +91.4% improvement in tail-trend detection precision@500 and +19% query generation accuracy over industry baselines, while sustaining stable performance after multi-week online training. This work demonstrates that LLM-generated synthetic search signals, when aligned and continually updated, unlock timely trend understanding in low-traffic search environments.
Abstract:The evolution of recommender systems has shifted preference storage from rating matrices and dense embeddings to semantic memory in the agentic era. Yet existing agents rely on isolated memory, overlooking crucial collaborative signals. Bridging this gap is hindered by the dual challenges of distilling vast graph contexts without overwhelming reasoning agents with cognitive load, and evolving the collaborative memory efficiently without incurring prohibitive computational costs. To address this, we propose MemRec, a framework that architecturally decouples reasoning from memory management to enable efficient collaborative augmentation. MemRec introduces a dedicated, cost-effective LM_Mem to manage a dynamic collaborative memory graph, serving synthesized, high-signal context to a downstream LLM_Rec. The framework operates via a practical pipeline featuring efficient retrieval and cost-effective asynchronous graph propagation that evolves memory in the background. Extensive experiments on four benchmarks demonstrate that MemRec achieves state-of-the-art performance. Furthermore, architectural analysis confirms its flexibility, establishing a new Pareto frontier that balances reasoning quality, cost, and privacy through support for diverse deployments, including local open-source models. Code:https://github.com/rutgerswiselab/memrec and Homepage: https://memrec.weixinchen.com
Abstract:Digital sensing faces challenges in developing sustainable methods to extend the applicability of customized e-noses to complex body odor volatilome (BOV). To address this challenge, we developed MORE-ML, a computational framework that integrates quantum-mechanical (QM) property data of e-nose molecular building blocks with machine learning (ML) methods to predict sensing-relevant properties. Within this framework, we expanded our previous dataset, MORE-Q, to MORE-QX by sampling a larger conformational space of interactions between BOV molecules and mucin-derived receptors. This dataset provides extensive electronic binding features (BFs) computed upon BOV adsorption. Analysis of MORE-QX property space revealed weak correlations between QM properties of building blocks and resulting BFs. Leveraging this observation, we defined electronic descriptors of building blocks as inputs for tree-based ML models to predict BFs. Benchmarking showed CatBoost models outperform alternatives, especially in transferability to unseen compounds. Explainable AI methods further highlighted which QM properties most influence BF predictions. Collectively, MORE-ML combines QM insights with ML to provide mechanistic understanding and rational design principles for molecular receptors in BOV sensing. This approach establishes a foundation for advancing artificial sensing materials capable of analyzing complex odor mixtures, bridging the gap between molecular-level computations and practical e-nose applications.
Abstract:Humanoid robots require precise locomotion and dexterous manipulation to perform challenging loco-manipulation tasks. Yet existing approaches, modular or end-to-end, are deficient in manipulation-aware locomotion. This confines the robot to a limited workspace, preventing it from performing large-space loco-manipulation. We attribute this to: (1) the challenge of acquiring loco-manipulation knowledge due to the scarcity of humanoid teleoperation data, and (2) the difficulty of faithfully and reliably executing locomotion commands, stemming from the limited precision and stability of existing RL controllers. To acquire richer loco-manipulation knowledge, we propose a unified latent learning framework that enables Vision-Language-Action (VLA) system to learn from low-cost action-free egocentric videos. Moreover, an efficient human data collection pipeline is devised to augment the dataset and scale the benefits. To execute the desired locomotion commands more precisely, we present a loco-manipulation-oriented (LMO) RL policy specifically tailored for accurate and stable core loco-manipulation movements, such as advancing, turning, and squatting. Building on these components, we introduce WholeBodyVLA, a unified framework for humanoid loco-manipulation. To the best of our knowledge, WholeBodyVLA is one of its kind enabling large-space humanoid loco-manipulation. It is verified via comprehensive experiments on the AgiBot X2 humanoid, outperforming prior baseline by 21.3%. It also demonstrates strong generalization and high extensibility across a broad range of tasks.
Abstract:Frequency domain (FD)-digital predistortion (DPD) is a low-complexity DPD solution for massive multiple-inputmultiple-output (MIMO) transmitters (TXs). In this letter, we extend FD-DPD to scenarios with multiple signal states (e.g., bandwidths and power levels). First, we propose a new neural network (NN)-based FD-DPD model, whose main idea is to use a hypernetwork (HN) to generate parameters for the output layer of the main NN based on the signal states. Then, we introduce how to effectively train the model with the help of time-domain (TD)-DPD. Experimental results show that the proposed model can achieve excellent performance, without requiring additional online training when signal states change.